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In a distributed sys tem whose pa rame te r s  vary with time the natural oscil lat ion modes are 
interconnected and so it is possible to get pa ramet r i c  excitation of severa l  synchronized 
harmonic  modes simultaneously~ If the natural oscil lation spec t rum of such a sys tem con- 
s is ts  of almost  equall~ spaced l ines,  then a periodic change of the pa rame te r s  with t ime 
can lead to the excitation of pulse- type oscillations [1]. This phenomenon can occur  both 
in sys t ems  whose size var ies  with time and in sys tems  whose boundary proper t ies  are 
nonstat ionary.  The p resen t  paper  is  devoted to a study of the instabili ty in these sys tems .  

w The effect of moving boundaries  on the nature ,6f wave phenomena in one-dimensional  mechanical  
sys tems was considered as ear ly  as in [2, 3]. Nikolai [3] was the f i r s t  to obtain an exact  solution to the prob-  
lem of oscil lat ions in a sys tem whgse size varied uniformly with time. In teres t  in a detailed study of these 
phenomena has only appeared compara t ive ly  recent ly  in connection with the increased  operational  speeds of 
machines* which use this type of sys tem as their  main elements .  

Many publications have now appeared (see, for example, [4, 5]) on the subject of nonresonant phenomena 
in sys tems  with 'moving boundaries.  On the other hand, almost no attention has been given to the resonance 
phenomena which resul t  in pa r ame t r i c  excitation although it is known that [1] the excited oscil lat ions will be 
in the form of pulses.  

We consider  the mechanical  sys tem consisting of a s t re tched string moving with a constant velocity v 
through two rings which are undergoing harmonic  oscillations~ We assume that the d iameters  of the rings are 
equal to the d iameter  of the string~ 

The t r ansver se  displacement  of the str ing u sat isf ies the equation 

c ) ~ u / O t  "- - -  2z'd~ 'O t  O x  - -  ( c ~ - -  L"- )~)'-U, &,:~ : 1), (1.1) 

and the homogeneous boundary conditions 

u i,= ~> - u!~=t,<t,=!i). 

where c is the velocity of waves on a s ta t ionary string; a(t) = ksin ~t; b(t) = l 0 +k sin~t;  and X, ~2, and l 0 are 
cons tan ts. 

When stated in this form the problem only remains  valid when the traveling waves on the string are 
reflected from the boundaries,  i.e., whent 

!~..O-i ~ c -- l~:~r (1.2) 

* We re fe r  here  to looms,  winding machines,  and shaft hoists .  
The problem of the co r r ec t  form of stating the problem for  the dynamics of a var iable- length s t r ing is dis-  

cussed in some detail in [1]. 
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Following the method proposed in [6], we can a rb i t ra r i ly  divide any initial perturbat ion of the str ing into 
individual sections,  each of which contains two pulses propagating as indicated by (1.1): 

x = (c - - v ) t  + C~, x = - - ( c  + v)t + Co, 

where C 1 and C 2 are appropriate  constants.  

The individual pulses in the initial per turbat ions will eventually, after multiple reflections from the 
boundaries ,  fo rm into a single pulse (Fig. 1). This in terac ts  with the boundary only at those instants of time 
when the boundary is  moving toward ito Its energy on reflection therefore  increases  in porport ion to the com-  
press ion  of the wave profi le as dictated by the double Doppler effect. In the limit t ~ ~, the length of the pe r -  
turbation tends to zero  and its energy to infinity (this is because nonlinear effects ,  such as the way the pe r tu r -  
bations influence the movement  of the boundary, are not taken in to  account)~ 

It can be seen f rom Fig. 1 that the pulse t ra jec tory  in the s p a c e - t i m e  plane (~x/c,  ~t) is a broken line 
composed of sect ions of the charac te r i s t i c s  lying between the boundary t ra jec tor ies .  It is  natural  to suppose 
that pa ramet r i c  resonance will be possible at Ieast  in those cases  where the function f(t) which descr ibes  the 
broken line near  ,Milch the charac te r i s t i c s  converge is periodic with a period T which is, of course,  a multiple 
of that of the boundary oscil lat ions.  

The problem can therefore  be divided into two par ts :  a) finding the conditions under which a periodic 
broken line exists;  b) finding the conditions for pa ramet r i c  resonance.  

w Wenowder ive  the conditions which have to be imposed on the sys tem pa ramete r s  to make the function 
f(t) periodic.  The approach we suggested can be used for  considering broken lines with any finite T but for  the 
clar i ty  we limit ourselves to the case where the period of f(t) is equal to the time between two success ive  
reflect ions of the pulse f rom the same boundary. 

Putting x 2 = Xo; t 2 = t o + 27FN~ -i  (Fig. 1), we get a sys tem of equations ~ 'dch  uniquely define the coordinates 
xod and to, 1 : 

i 
x o = ~, sin f-)t(, 

x o : - -  (c  - -  v )  t,, -!~ 01, 

' - -  )(t0 + c , ,  { d'O == . .  

t xl = io -~- k sin_O.t t. 

{ x ~ = ( c - - v )  t l + C .  

t x~ = - - (c- :  v) t l - : -C. , .  

Solving this sys tem for t o + tl, we get 

cosI(-Q 2)(t o + t,)] =: [.-~NeD-'(t - -v~c c ) - l . } / 2k s i ,~ i (~N / 2 ) ( l  ~ v:e)], (2.1) 

Since to and q a r e  r ea l ,  Eq.  (2.1) only  has  a solut ion when 

[ [o~.o_-' N (1 --v'-/e ~) - l ] / 2 } . I y '  sin I(,~.V 2)(l v ' e ) ] l ~  t, (2.2) 

w h e r e  co = ~rclo I is the lowest  na tu ra l  f r e q u e n c y  of  the c o r r e s p o n d i n g  s t a t i o n a r y  s y s t e m .  

The inequality (2.2) defines the region of the sys tem pa rame te r s  for  which a periodic broken line exists .  
The  boundar ie s  a r e  the s u r f a c e s  

573 



,t/~ol . a ~/z~ b 

' ,v:t ~ 1 

0,25 0,25 i ~ . . . .  

0 I ~ 1 ~  0 ' c o t ~  

Fig,  3 

" ' - '  [1 - -  X ~ o 9 . - '  (1 - v"-/c~)]/21 s i n l ( . ~ N , ' 2 ) ( l  -:- v c ) l  l, 

M~ "~ .= [Ne.O.- '  ( i  - -  v " - / c " - )  - -  l ]  t21 sin [ ( nN /2 ) ( l  - -  v;'~)ll. 

We also  have to r e m e m b e r  condi t ion (1o2) and so we ge t  one m o r e  bounding s u r f a c e :  

~ L ' l o  = (,~-o--1(t --Iv[.'c). 

w F o r p a r a m e t r i c r e s o n a n c e  to o c c u r  i t  is  n e c e s s a r y  fo r  the c h a r a c t e r i s t i c s  to b e c o m e  concen t r a t ed  
with t ime.  The r a t i o s  of the d i s t a n c e s  between two f a i r l y  c lose  c h a r a c t e r i s t i c s  be fo re  (Pl) and a f t e r  (o2) r e f l e c -  
tion f r o m  the uppe r  and l o w e r  bounda r i e s ,  r e s p e c t i v e l y ,  a r e  equal to 

V I -~- (1 -:- v/c)"- 1 - -  v/c - -  i~ e 

1 - ? [1 - -  c/c)"- 1 v,,'c "7- b /c  

V I -b (1 - -  c/e)"- 1 -= v / e - -  a le  

1 -:- (1 : -  r/c)~ 1 v , c - - o c  

Since two r e f l ec t i ons  o c e u r  in one pe r iod  of f(t), the condit ion fo r  concen t r a t i on  of the c h a r a c t e r i s t i c s  and 
t h e r e f o r e  f o r  p a r a m e t r i c  r e s o n a n c e  can be wr i t t en  

{11 - -  : c - -  i ) ( t , ) , c l  I t - -v;c  : -  I ) ( l l ) / C ] } .  {tl-=-c.c @ o ( t . , ) , c ] / l t  - -  r c - -  a(t2) c] } > 1 

o r  

d( c,_) - )~( t , )  > ,~. 

Subst i tut ing into (3.1) the equat ion fo r  the m o v e m e n t  of the boundary  (2o2), we get  

(3.1) 

Anl(.(..).'2)(t, t~)]. s i n l (aN . ' 2 ) ( t  c.c) 1 > i~, 

i .e. ,  when sin[0rN/2)(l + v/c)] > 0, 2kTr< (~/2)( h ~ ~) < (2k + l)Tr; when sin [(~N,/2)(I + v/c)] -. 0, 2(k-l)Tr < 
(,%/2)(t I + t2) < 2kTr (k = 0, 1, 2 . . . .  ); or if sin[(vN/2)(l + v/c) ~ 0, then cos [(~/2)(tl +t2] can take any values 
except the extremal values 

- 1  < c,)sl(_q 2)(t, -- t~)] < I. (3.2) 

C o m p a r i n g  (3.2) with (2.1), we see  that apa r t  f r o m  t h e b o u n d a r i e s  and the points  w h e r e  s in[0rN/2)  (1 + v /c ) ]  = 
0, the reg ion  w h e r e  pe r iod ic  f(t) funct ions ex is t  is the s a m e  as that where  we ge t  p a r a m e t r i c  r e sonance .  Thus 
p a r a m e t r i c  r e s o n a n c e  is de t e rmined  by the inequal i t ies  

! [co.O.-, _vd - v~ /~  ~) - l ] , 2 ; . t :  ~ ~i,, i ( ~ x  2)( i  + ,- ~)l ] 4 ~: 

aI.10 ~co-o--'(i -] rl,'c). 
(3.3) 

w Condit ions (3.3) a r e  quite s imp le  in fo rm~ They  contain  four  independent  p a r a m e t e r s  but one of them 
(N) can take only in teg ra l  va lues ,  to each of which there  c o r r e s p o n d s  a p a r t i c u l a r  z o n e i n  the p a r a m e t e r  space  
( w / ~ ,  v / c ,  )t//0)- The zones  have no c o m m o n  points  and so the va lues  of N can convenient ly  be used to n u m b e r  
the zones .  
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The present  method enables l inear losses  at boundary ref lect ions to be taken into account quite simply.  
It is only necessa ry  to multiply the left side of (3.1) by the coefficients F a and r b which charac ter ize  the d i s s i -  
pative energy losses  occur r ing  on reflection. Using the inequality thus obtained, we can easi ly find the condi- 
tion for instability; when v = 0 this becomes 

I co~-' m--i _ . i + r f l '  b ]~},!2 
2Moi 1 < [[i [ c~176 ~,~. ~ 1 r<,rb \ ,. i ' f ' l  (, 

(o~tnp.)[(t - ro r~) l ( l  + rorb)]  [~ - l / l  - ( 1 -  ror~)~i(l  + r,~rb) ~] <~ ~zo ~ < (~i~.o). 

It follows f rom this that the excitation khreshold dec reases  with increase  of zone number  (i.e., with increase  
in ~2)o Thus in this class  of sys tem it  is absolutely neces sa ry  to cons ider  not only the f i rs t ,  b u t a l s o t h e h i g h e r -  
o rde r  pa rame t r i c  resonances ,  This fact  is a resul t  of the multimode nature of the syatem, a proper ty  which is 
confirmed by experimental  studies on sys tems  with distributed pa rame te r s  which vary with time [7]. The in- 
stability growth rate  inc reases  with zone number  and for  v = 0 its maximum value (in the zone centers)  is equal 
to 

It is interest ing to note that only the odd zones exist for a s ta t ionary str ing (v = 0) (see Fig. 3a)o If the 
s t r ing moves with even a small  velocity, then the number  of zones doubles and they all become shifted t'~ the 
right along the w/~2 axis (Fig. 3b). The width of the zones depends on the velocity" of the s tr ing (Fig. 4)o ~,~en 
sin[(rrN/2)(1 + v/c)] = 0 the zones degenerate  into s t ra ight- l ine  segments,  the number  of segments co r respond-  
ing to the zone number  N. 

The number of pulses excited in a system can vary.  It depends on the initial conditions. We can show 
by means of graphical  construct ions on the s p a c e - t i m e  plane (see Fig. 1) that the grea tes t  number of excited 
pulses is  equal to the corresponding zone number~ 

The approach which we have adopted here  to the study of the pa ramet r i c  resonance conditions can also 
be used for more  general  cases  of boundary movement .  If, for  example, the boundaries do not move in phase 
and 

then in place of (3.3) we get 

ct(t)  = "t. s i n  _Qt; b ( t )  = l o -4- ~,. sin(.Qt 4,- q~), 

I ! o)-~ (I -- v~.'c ~-) -- I].2%l~ -~ sin [(Nn/2)(l -~ v/c) ~- rfl I--.~ i; 

n]  }. I t T  ~ "< o~.Q-' ( i  - -  I v t."c). 

The phase difference obviously produces a shift of the zones in pa r ame te r  space along the v /c  axis. 

w Thewave p rocesses  in the sys tem we have considered are s imi la r  in nature to those which occur  in a 
one-dimensional  mechanical  sys tem where the proper t ies  of the boundaries vary with t ime. An elast ic fixing, 

575 



Fig. 6 

fo r  example ,  is  equivalent  to an extens ion of the s y s t e m  for  ha rmonic  waves .  Thus a va r i a t ion  in the r ig id i ty  
with t ime will co r r e spond  more  o r  l e s s  to a va r i a t ion  in the extension and hence the in te rac t ion  of a wave with 
this  type of f ix ture  can r e s u l t  in c o m p r e s s i o n  (or elongation) as in the Doppler  effect  at a moving boundary.  

The p a r a m e t r i c  exci ta t ion of pulse osc i l l a t ions  has been obse rved  e x p e r i m e n t a l l y  in a d i s t r i bu t ed  mechan -  
i ca l  s y s t e m  wi th  a nons ta t iona ry  boundary  (Fig.  5) which took the fo rm of an extended f lat  r u b b e r  band 110 cm 
in length and 2.5 cm in width. One end of the band was r ig id ly  c lamped  and the o ther  was held between two s tee l  
bending sp r ings .  The r ig id i ty  of these  sp r ings  was va r ied  pe r i od i c a l l y  in t ime by means  of a motor  c a r r y i n g  
a s y m m e t r i c a l l y  p laced  e l l i p t i ca l  c am.  The r ig id i ty  c thus var ied  about i t s  average  va lue  c0 accord ing  to a m o r e  
or  l e s s  harmonic  law with a r e l a t i ve  modulat ion depth of m >_ 0.2. 

With c = e 0 and a tension of h = 5 kg, the f i r s t  4-5 components  in the na tura l  t r a n s v e r s e  osc i l l a t ion  s p e c -  
t rum of the band were  a lmos t  equal ly  spaced and at the lowest  f requency of f0 = 13 Hz the magnif ica t ion Q _~ 40~ 

The osc i l l a t ions  were  r e c o r d e d  by means  of a microphone which was se t  up nea r  the band. The voltage 
f rom the t e r m i n a l s  of the mic rophone  was fed to an osc i l lo scope .  The quantity that was observed  was thus the 
t ime de r iva t ive  of the t r a n s v e r s e  d i s p l a c e m e n t  at a fixed c r o s s  sect ion of the d i s t r i bu t ed  s y s t e m .  

The modulat ion f requency  F of the sp r ings  was var ied  between 10 and 70 Hz. Severa l  zones of p a r a m e t r i c  
ins t ab i l i ty  were  found in this range .  The osc i l l a t ions  exci ted  in the odd zones (F = f0 and F = 3f0) were  a lmos t  
s inusoida l  (Fig.  6a), while those in the even zones (F = 2f 0 and F = 4f0) were  of the pulse  type (Fig. 6b-d)~ The 
exac t  shape  of the pu l ses  depended very  much on where the microphone  was p laced  along the band. Unipolar  
pu l ses  were  obse rved  nea r  the fixed end (Fig.  6c) and d ipo la r  pu l ses  in the middle  (Fig. 6d)~ 

Quite d i f fe ren t  pu lse  exci ta t ion  effects  were  obse rved  at the edges  of the ins tab i l i ty  zones.  The pu l ses  
e i t h e r  appeared  with e v e r y  o the r  one mi s s ing  (Fig~ 6e) or  o c c u r r e d  in groups  (Fig.  6f)~ This  can probably  be 
explained by the nonl inear  na tu re  of the sys t em.  

We might  note,  in conclusion,  tha t the  p a r a m e t r i c  pulse exci tat ion effects  observed  in this sy s t em have 
much in common with the s i m i l a r  effects  in e l ec t rodynamic  d i s t r ibu ted  s y s t e m s  where  the d i s t r ibu ted  [7] or  
lumped [8] p a r a m e t e r s  va ry  with t ime .  

1. 

2. 
3. 

4. 

5. 

6. 

LITERATURE CITED 

A. I. Vesnitskii and A. I. Potapov, "Effective method of studying wave processes in systems whose size 
varies with time," in. Dynamics of Systems [in Russian], No. 7, Gor'k. Univ., Gor'kii (1975). 
Lord Rayleigh (J. W. Strutt), "On the pressure of vibrations," Phil. Mag., Ser~ 6, 3_No. 15, 338 (1902)o 
E~ L~ Nikolai, "Transverse oscillations of a section of string whose length varies uniformly," in- Papers 
on Mechanics [in Russian], GITTL, Moscow (1955). 
Oo A~ Goroshko and G. N. Savin, Introduction ~ the Mechanics of One-Dimensional Deformable Bodies of 
Variable Length [in Russian], Naukova Dumka, Kiev (1971). 
A. I. Vesnitskii and A. Ir Potapov, "Some general properties of wave phenomena in aone-dimensional me- 
chanical system of variable length," Prikl. Mekh., Ii___, No. 4, 98 (1975). 
V. N. Krasil'nikov and A. M. Pankratov, "Electromagnetic fields in resonators withoscillatingboundaries," 
in; Problems in Wave Diffraction and Propagation [in Russian], No. 8, Leningr. Univ., Leningrad (i 968), p. 59. 

576 



7o 

8o 

A. I. Vesnitskii ,  Lo A. Ostrovskii ,  V~ Vo Papko, and V. N. Shabanov, " P a r a m e t r i c  pulse generation," 
Zh. ~ksp. Teoro Fiz. ,  P i s ' m a  Red., 9 ,  No. 5, 274 (1969)o 
D~ A. Kabanov and S. M. Nikulin, "Generat ion of pulses in a t ransmiss ion  line with pa ramet r i c  diodes," 
Radiotekh~ l~lektrono, 17.._., No. 8, 1756 (1973). 

LOW-INERTIA PYROELECTRIC DETECTORS 

RADIATION OVER THE 40-1100- nm RANGE 

Yu~ N. Kiselev and V. Z. Krokhin 
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Pyroe lec t r i c  radiation detec tors  which make use of the abrupt tempera ture  dependence of the spontaneous 
polar izat ion in f e r roe l ec t r i c s  have a comparat ively  high sensit ivity,  a broad spectral  response,  and a low 
iner t ia  [1, 2]. Pyrode tec to rs  are  usually used to record  inf rared  radiation, 

We consider  the operation of a longitudinal-type de tec to rwhichuses  a f e r roe lec t r i c  c rys ta l .  The po la r -  
ization vector  P is directed along the x axis perpendicular  to the e lectrodes  and the radiation is absorbed by 
one of the e lectrodes .  The pyroe lec t r ic  cur ren t  produced in any element AxAyAz of the crys ta l  is determined 
by the time rate of change of the polarizat ion dq/dt  = AyAzdP/dt,  and the average current  in the c rys ta l  is p ro -  
portional to the change in the average tempera ture  

d d 

d-7- = -9- ~ tiT' ~-,~t ~--2 = , '7" .... ~ ; 7 / =  r .~ 7/--.' 
b 

where A is the a rea  of the c rys ta l  surface on which the radiation is incident, d is the thickness of the crysta l  
in the direct ion of propagation of the thermal wave, and y = dP /d t  is the pyroelec t r ic  coefficient - a constant 
over  some tempera ture  range below the Curie tempera ture .  

If we neglect  thermal  losses  in the c rys ta l ,  we can write the thermal  balance equation in the form 

cdd-T/dt = adE /d t ,  

where c is the thermal  capacity of unit volume of the c rys ta l ,  E is the radiat ion energy density, and a is the 
radiation absorption coefficient of the c rys ta l .  

The measur ing  c i rcui t  can be represented as a cur ren t  genera tor  connected in parallel  with the se l f -  
capacity of the c rys ta l  C+, the c rys ta l  res i s tance  R+, the c i rcui t  capacity C_, and the load res i s tance  R-.  The 
res i s tance  of the crys ta l  is usually much g rea te r  than the load res is tance (R+ ~ 101~ ~.  cm) and can be 
neglected. The voltage ac ross  the load res i s tance  in the case R_C 1 >> r ~ (C 1 = C- + CO is 

U = (AaT/Cldc)E .  (1) 

and when R_C 1 << ~r,~ it is 

U = ( A a ? R _ ; d c ) . d E / d t .  (2) 

The quantities ~0 and 7 .  are  the maximum and typical minimum durations of a radiation pulse.  Relationships 
(1) and (2) define two important  modes of operat ion for  a pyroelec t r ic  ~etector: the measu remen t  of the energy 
of a pulse (R_C 1 >> ~-0) and the measuremen t  of its power (R_C 1 << r .). 
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