PARAMETRIC PULSE EXCITATION IN DISTRIBUTED MECHANICAL
SYSTEMS WITH NONSTATIONARY BOUNDARIES-
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and S, R. Shokhin

In a distributed system whose parameters vary with time the natural oscillation modes are
interconnected and so it is possible to get parametric excitation of several synchronized
harmonic modes simultaneously. If the natural oscillation spectrum of such a system con-
sists of almost equally spaced lines, then a periodic change of the parameters with time
can lead to the excitation of pulse~type oscillations {1]. This phenomenon can occur both
in systems whose size varies with time and in systems whose boundary properties are
nonstationary. The present paper is devoted to a study of the instability in these systems.

§1. The effect of moving boundaries on the nature 6f wave phenomena in one-dimensional mechanical
systems was considered as early as in [2, 3], Nikolai {3] was the first to obtain an exact solution to the prob-
lem of oscillations in a system whose size varied uniformly with time, Interest in a detailed study of these
phenomena has only appeared comparatively recently in connection with the increased operational speeds of
machines* which use this type of system as their main elements,

Many publications have now appeared (see, for example, [4, 5]) on the subject of nonresonant phenomena
in systems with moving boundaries. On the other hand, almost no attention has been given to the resonance
phenomena which result in parametric excitation although it is known that [1] the excited oscillations will be
in the form of pulses.

We consider the mechanical system consisting of a stretched string moving with a constant velocity v
through two rings which are undergoing harmonic oscillations. We assume that the diameters of the rings are
equal to the diameter of the string.

The transverse displacement of the string u satisfies the equation
Pufof —20du dtdr — (¢ — )F u, dx* = 1, (1.1)
and the homogeneous boundary conditions
U foein = Uy, = U,

where c is the velocity of waves on a stationary string; a(t) = Asin Qt; b(t) = I, +AsinQt;and A, 2, and [, are
constants,

When stated in this form the problem only remains valid when the traveling waves on the string are
reflected from the boundaries, i.e., whent

2Q) < ¢ — v} 1.2)

* We refer here to looms, winding machines, and shaft hoists,
+ The problem of the correct form of stating the problem for the dynamics of a variable-length string is dis-

cussed in some detail in [1].
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Following the method proposed in [6], we can arbitrarily divide any initial perturbation of the string into
individual sections, each of which containg two pulses propagating as indicated by (1.1):

z=(c —v)t + Cq, = —{¢c + v} + C,,

where Cy and C, are appropriate constants,

The individual pulses in the initial perturbations will eventually, after multiple reflections from the
boundaries, form into a single pulse (Fig. 1). This interacts with the boundary only at those instants of time -
when the boundary is moving toward it, Its energy on reflection therefore increases in porportion to the com-
pression of the wave profile as dictated by the double Doppler effect. In the Himit t — o, the length of the per-
turbation tends to zero and its energy to infinity (this is because nonlinear effects, such as the way the pertur-
bations influence the movement of the boundary, are not taken into account),

It can be seen from Fig, 1 that the pulse trajectory in the space~time plane (2x/c, Qt) is a broken line
composed of sections of the characteristics lyingbetween the boundary trajectories. It is natural to suppose
that parametric resonance will be possible at least in those cases where the function £{t) which describes the
broken line near which the characteristics converge is periodic with a period T which is, of course, a multiple
of that of the boundary oscillations, -

The problem can therefore be divided into two parts: a) finding the conditions under which a periodic .
broken line exists; b) finding the conditions for parametric resonance.

§2, Wenowderive the conditions which have to be imposed on the system parameters to make the function
f(t) periodic. The approach we suggested can be used for considering broken lines with any finite T but for the
clarity we limit ourselves to the case where the period of {(t) is equal to the time between two successive
reflections of the pulse from the same boundary. '

Putting x; = xq; ty = t, + 27NQ™! (Fig, 1), we get a system of equations which uniquely define the coordinates
XO,Z{ and tmii

Xy == Lsin O,

£y == (e —v)t, = Cy,

£y = (e = v)(ty - 2aNQ ™) - G,
Vo= I, — 2sin Qg
rp={c—uv}f;—Cy

a1y = —fe-F o)y - Gy

Solving this system for t; + t;, we get
cosl{Q 23ty + 3] = [aNeQ-Y1 — 2 %) L 1 2hsinl{m V21 = v.o)) 2.1
Since f; and t; are real, Eq, (2.1) only has a solution when
[ {07 V(1 — ety — 112005 sin (2N 2) (1 - el | << 2.2)

where w« =':rcl{,'1 is the lowest natural frequency of the corresponding stationary system,

The inequality (2.2) defines the region of the system parameters for which a periodic broken line exists,
The boundaries are the surfaces
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== Ne@ T (L — v¥ed)| 2] sinl(aN2) (L - o)l
Myt = [VoQ ' (1 — pic?) — 1]72] sin [(mN/2)(1 - vic)l|.

We also have to remember condition (1.2) and so we get one more bounding surface:

ak/ly = oQ-Y1 — [pl'e).

§3. Forparametricresonance to occur it is necessary for the characteristics to become concentrated
with time, The ratios of the distances between two fairly close characteristics before (p;) and after (p,) reflec~
tion from the upper and lower boundaries, respectively, are equal to

1——(1——Lc 1—v/c—‘iu-

S L+ vie—bic '
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Since two reflections occur in one period of f(t), the condition for concentration of the characteristics and
therefore for parametric resonance can be written

(1 — v e —i(t)el 1—pe=-bit)ely-{ll-=v.c = a(l) e — v ¢ —a(t)el} > 1
or
a(ty) — (1) > 0. (3.1)
Substituting into (3.1) the equation for the movement of the boundary (2.2), we get
i (Q2)(4 = LY Fsinl(aN2) (1 + ve)l >0,
i.e., when sin[(zN/2)(1 + v/c)1> 0, 2kr< (Q/2)(t + t) < 2k + 1)7m; when sin [(rN/2)1 + v/¢)] <0, 2k—1)7 <

Q2/2)(t +ty) <2kr(k=0,1,2,,..);o0rif sin[(7N/2)(@1 + v/c) =0, then cos [(R/2) (t; +t,] can take any values
except the extremal values

1 < cosl(Q.2)(1, — )] < 1. (3.2)

Comparing (3.2} with (2.1), we see that apart from theboundaries and the points where sin[(TN/2)(1 +v/c)]=
0, the region where periodic f(t) functions exist is the same as that where we get parametric resonance, Thus
parametric resonance is determined by the inequalities

o™t N (1 — v2/ety — 1],20057 sin (N 2)(1 = coo) | < 1

arly QT (A — vl

(3.3)

§4. Conditions (3.3) are quite simple in form., They contain four independent parameters but one of them
(N) can take only integral values, to each of which there corresponds a particular zonein the parameter space
/2, v/e,a/ly). The zones have no common points and so the values of N can conveniently be used to number
the zones.
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Fig, 4 Fig. 5

The present method enables linear losses at boundary reflections to be taken into account quite simply.
1t is conly necessary to multiply the left side of {3.1) by the coefficients I}; and I}, which characterize the dissi-
pative energy losses occurring on reflection. Using the inequality thus obtained, we can easily find the condi-
tion for instability; when v = 0 this becomes
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It follows from this that the excitation threshold decreases with increase of zone number (i.e., with increase
in 92). Thus in this class of system it is absolutely necessary to consider not only the first, butalso the higher-

order parametric resonances, This fact is a result of the multimode nature of the system, a property which is -
confirmed by experimental studies on systems with distributed parameters which vary with time [7]. The in-
stability growth rate increases with zone number and for v = 0 its maximum value (in the zone centers) is equal
to

(@/22)In {T, Ty 111 — a5 N /(L — At Nm] 3.

It is interesting to note that only the odd zones exist for a stationary string (v = 0) (see Fig, 3a), If the
string moves with even a small velocity, then the number of zones doubles and they all become shifted t~ the
right along the «/  axis (Fig. 3b). The width of the zones depends on the velocity of the string (Fig. 4). When
sin[{xN/2)(1 + v/c}] = 0 the zones degenerate into straight-line segments, the number of segments correspond-
ing to the zone number N.

The number of pulses excited in a gystem can vary, It depends on the initial conditions., We can show
by means of graphical constructions on the space—time plane (see Fig. 1) that the greatest number of excited
pulses is equal to the corresponding zone number,

The approach which we have adopted here {o the study of the parametric resonance conditions can also
be used for more general cases of boundary movement, If, for example, the boundarieg do not move in phase
and

aft) = b sin Qt; B(8) = Iy - 2 sin(Qt + ¢),
then in place of (3.3) we get
[ [0OQ™ N (1 — v2ety — 1]:2005  sin [(Nai2)(1 = vie) + q1] < 1
R <o — vl i)
The phase difference obviously produces a shift of the zones in parameter space along the v/c axis,

§5. Thewave processes in the system we have considered are similar in nature to those which occurin a
one-dimensional mechanical system where the properties of the boundaries vary with time, An elastic fixing,
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Fig. 6

for example, is equivalent to an extension of the system for harmonic waves. Thus a variation in the rigidity
with time will correspond more or less to a variation in the extension and hence the interaction of a wave with
this type of fixture can result in compression (or elongation) as in the Doppler effect at a moving boundary.

The parametric excitation of pulse oscillations has been observed experimentally ina distributed mechan-
ical system with a nonstationary boundary (Fig. 5) which took the form of an extended flat rubber band 110 cm
in length and 2.5 cm in width. One end of the band was rigidly clamped and the other was held between two steel
bending springs, The rigidity of these springs was varied pericdically in time by means of a motor carrying
a symmetrically placed elliptical cam, The rigidity c thus varied about its average value cyaccording toamore
or less harmonic law with a relative modul ation depth of m = 0.2,

With ¢ = ¢ and a tension of h = 5 kg, the first 4-5 components in the natural transverse oscillation spec-
trum of the band were almost equally spaced and at the lowest frequency of f, = 13 Hz the magnification Q = 40.

The oscillations were recorded by means of 2 microphone which was set up near the band. The voltage
from the terminals of the microphone was fed to an oscilloscope. The quantity that was observed was thus the
time derivative of the transverse displacement at a fixed cross section of the distributed system.

The modulation frequency F of the springs was varied between 10 and 70 Hz. Several zones of parametric
instability were found in this range., The oscillations excited in the odd zones (F = f; and F = 3f;) were almost
sinusoidal (Fig. 6a), while those in the even zones (F = 2f, and F = 4f)) were of the pulse type (Fig. 6b~d). The
‘exact shape of the pulses depended very much on where the microphone was placed along the band., Unipolar
. pulses were observed near the fixed end (Fig. 6¢) and dipolar pulses in the middle (Fig. 6d).

Quite different pulse excitation effects were observed at the edges of the instability zones., The pulses
either appeared with every other one missing (Fig. 6e) or occurred in groups (Fig. 6f). This can probably be
explained by the nonlinear nature of the system.,

We might note, in conclusion, that the parametric pulse excitation effects observed in this system have
much in common with the similar effects in electrodynamic distributed systems where the distributed [7] or
lumped [8] parameters vary with time,
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LOW-INERTIA PYROELECTRIC DETECTORS FOR RECORDING
RADIATION OVER THE 40-1100- nm RANGE

Yu. N, Kiselev and V, Z, Krokhin UDC 535.231.6:537.227+533.6,011,72

Pyroelectric radiation detectors which make use of the abrupt temperature dependence of the spontaneous
polarization in ferroelectrics have a comparatively high sensitivity, a broad spectral response, and a low
inertia [1, 2]. Pyrodetectors are usually used to record infrared radiation,

We consider the operation of a longitudinal-type detector whichuses a ferroelectric crystal, The polar-
ization vector P is directed along the x axis perpendicular to the electrodes and the radiation is absorbed by
one of the electrodes. The pyroelectric current produced in any element AxAyAz of the crystal is determined
by the time rate of change of the polarization dg/dt = AyAzdP/dt, and the average current in the crystal is pro-
portional to the change in the average temperature

4 @ — -
S ap {1 fg ;
dg _j_ \dl ar ,.. ¢ _ 1 \ aTd“ L 8T dg A a7
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0 4

where A is the area of the crystal surface on which the radiation is incident, d is the thickness of the crystal
in the direction of propagation of the thermal wave, and v = dP/dt is the pyroelectric coefficient — a constant
over some temperature range below the Curie temperature,

If we neglect thermal losses in the crystal, we can write the thermal balance equation in the form

cddT/dt = adE/dt,
where ¢ is the thermal capacity of unit volume of the crystal, E is the radiation energy density, and ¢ is the
radiation absorption coefficient of the erystal,

The measuring circuit can be represented as a current generator connected in parallel with the self-
capacity of the crystal C+, the crystal resistance Ry, the circuit capacity C_, and the load resistance R.. The
resistance of the crystal is usually much greater than the load resistance (R4 ~ 101°-~10!2 Q. cm) and can be
neglected, The voltage across the load resistance in the case R.Cy » 1¥ (C;= C- + Cy) is

U = (Aay/Cdo)E. 1)

and when R.Cy « 7y it is
U = (dayR_/de). dE/dt, (2)
The quantities 7° and 74 are the maximum and typical minimum durations of a radiation pulse, Relationships

(1) and (2) define two important modes of operation for a pyroelectric letector: the measurement of the energy
of a pulse (R_C; > 7% and the measurement of its power R.Cy < 7).
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